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Now, consider piecewise C' contours that piece together continuously:

o Def: Letyj: [aj, bj]—>C be Cl,j=1,2...,n. Require
’Yj(bj):y]+l(a]+l),]:1, ...n_l

~ 7, +“6 be-
Then y= v EJ w111 be our notation for the piecewise C! path obtained from

following the paths in order (The text acually requires that the intervals [aj bj] piece
together as well, i.e. b;=a; , |, which we could always accomplish by reparameferizing

the curves if necessary. And in that case Y would actually be a piecewise C' function
\gn the amalgamated interval [a;, b, ].)
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Def For vy as above, define v, (a;) to'be the initial point of y, and v, (b)) to be the

terminal point.

e we write
Y=YtV t..+7,
and define the contour -y by -y= rl=~" 5 S—

Y=Y "Y,—1 "V -
And we define the contour integral

® Jf(z)dz=J
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Theorem Let y=vy, + v, +...+ 7, be a piecewise C' curve, with range in 4 < C open.
Let f: 4— C continuous. Then

(1)
O FOR
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proof: J f(z) dz=—J f(2) dz\ Now sum over j.
) Yj
¢ (2) If 3 antiderivative F': 4 — C with F'=f then
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where Q is the terminal point of of ¥ and P is the initial point. - %ﬂ - F{pe)
proof: + \:(KSU,Q\"" (s,)
Jf(z)dz—ZJf(z)dz = FlQ) - F(P)
j=1
/ Y
= 2F(5(8) = F(y(e))

F(Q) — F(P)
(telescoping series).
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Examples 2: Compute the following. Recall that particular parameterizations don't
matter, just the directions of the curves. y= T, s
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parameterization Green's Theorem FTC
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Math 4200-001
Week 5 concepts and homework
2.2-2.3
Due Friday October 2 at 11:59 p.m.

2.2: 5, 11.
2.3:1,3,5,7,9, 10. In 9b write down a homotopy from the given curve to the standard
parameterization of the unit circle, in C\{0}, to justify your work.



Math 4200
Friday September 25

2.2 Antiderivatives for analytic functions and Cauchy's Theorem: We'll begin by
completing Wednesday's notes on contour algebra and the extension of contour integrals

to continuous piece-wise C' contours Y. In particular we'll check this extension of the
FTC:

(Theorem (FTC for contour integrals) Let A & C open, f: 4 — C continuous,

v:la, b] € R—C a piecewise ' curve. If f has an analytic antiderivative in 4, i.e.
F’=f, then complex line integrals only depend on the endpoints of the curve 7y, via the
formula

L A/\K«(Wq Lf(z) dz == F(y(b)) — F(v(a))

3= P

Then the focus of today's notes is to discuss converses to the FTC: namely, what
conditions on contour integrals and f(z) imply that f(z) has a complex antiderivative
F(z)?

—

Announcements: .|-—}1,\)(7

Warm-up exercise:



Contour integrals and antiderivatives:

Let f: 4 = C— C continuous, 4 open and connected. When does f have an
antiderivative F(z), i.e. F'(z)=f(z)Vz&€ A ? (Note: we've discussed before why
antiderivatives on open connected domains are unique up to additive constants, because
their differences have zero derivative.)

Theorem 1 The following are equivalent, for f: 4 — C continuous, where 4 is open
and connected:

(i) 3 F:A—C suchthat F'=f on 4
T

(1) Contour integrals are path independent, 1.e. for all choices of initial point P and
terminal point Q in 4,
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whenenver Y,» ¥, are piecewise C (continuous) paths that start at P and end at Q.
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proof:
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(ii) = (i) We are assuming the following:

(i1) f:A— C continuous, where A4 is open and connected: Contour integrals for f
are path independent, i.e. for all choices of initial point P and terminal point Q in 4,

| r@ =] 1@ e
Y 0

: : 1
whenenver Y,> ¥, are piecewise C paths that start at P and end at Q.

So, fix any z, € A. Because 4 is open and connected it is pathwise connected, and for

: : 1 . :
cach z € A there are piecewise C contours in 4 which start at z, and end at z. (See

appendix.) Pick any such contour and denote it by Y, - Define our candidate
0
antiderivative by

By hypothesis F(z) is well-defined, since contour integrals are path-independent. Our
work is to show that F' is complex differentiable at each z € A and that its derivative is
f. We'll verify the affine approximation formula for F'!
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Fah)= FR) + fGh + k2 anclimsth 1)
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Theorem 2 If 4 is open and simply connected Let f: A— C be analytic and C'. Then l’f;‘:‘i{_‘
f has antiderivatives F', unique up to additive constants. i)

proof: We'll use Green's Theorem to explain why the path-independence condition (i1)
of Theorem 1 holds. Thus antiderivatives exist, and one way to express them is via
contour integrals as in the previous discussion:

Notice how we will use the "no-holes" idea of simply-connected. This explanation is not
completely rigorous, but we'll fix that lack of rigor in section 2.3 by defining simply
connected more carefully, and also by using different techniques that don't depend on
Greens' Theorem and our heuristic pictures of what contours look like.
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